The effect of whitening transformation on pooling operations in convolutional autoencoders
نویسندگان
چکیده
Convolutional autoencoders (CAEs) are unsupervised feature extractors for high-resolution images. In the preprocessing step, whitening transformation has widely been adopted to remove redundancy by making adjacent pixels less correlated. Pooling is a biologically inspired operation to reduce the resolution of feature maps and achieve spatial invariance in convolutional neural networks. Conventionally, pooling methods are mainly determined empirically in most previous work. Therefore, our main purpose is to study the relationship between whitening processing and pooling operations in convolutional autoencoders for image classification. We propose an adaptive pooling approach based on the concepts of information entropy to test the effect of whitening on pooling in different conditions. Experimental results on benchmark datasets indicate that the performance of pooling strategies is associated with the distribution of feature activations, which can be affected by whitening processing. This provides guidance for the selection of pooling methods in convolutional autoencoders and other convolutional neural networks.
منابع مشابه
A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملFine-tuning CNN Image Retrieval with No Human Annotation
Image descriptors based on activations of Convolutional Neural Networks (CNNs) have become dominant in image retrieval due to their discriminative power, compactness of the representation, and the efficiency of search. Training of CNNs, either from scratch or fine-tuning, requires a large amount of annotated data, where high quality of the annotation is often crucial. In this work, we propose t...
متن کاملICA with Reconstruction Cost for Efficient Overcomplete Feature Learning
Independent Components Analysis (ICA) and its variants have been successfully used for unsupervised feature learning. However, standard ICA requires an orthonoramlity constraint to be enforced, which makes it difficult to learn overcomplete features. In addition, ICA is sensitive to whitening. These properties make it challenging to scale ICA to high dimensional data. In this paper, we propose ...
متن کاملBest Practices for Convolutional Neural Networks Applied to Object Recognition in Images
This research project studies the impact of convolutional neural networks (CNN) in image classification tasks. We explore different architectures and training configurations with the use of ReLUs, Nesterov's accelerated gradient, dropout and maxout networks. We work with the CIFAR-10 [15] dataset as part of a Kaggle competition [8] to identify objects in images. Initial results show that CNNs o...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015